
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.341: Discrete-Time Signal Processing

OpenCourseWare 2006

Lecture 7

IIR, FIR Filter Structures

Reading: Sections 6.1 - 6.5 in Oppenheim, Schafer & Buck (OSB).

Signal Flow Graphs

A linear time-invariant discrete-time system is in general represented by a linear constant-
coefficient difference equation characterizing the input-output relation of the system. As a
network structure, such a difference equation can be represented by a block diagram or a signal
flow graph. A signal flow graph is a network of directed branches that connect at nodes. It is
equivalent to block diagrams which we are already familiar with, except for a few notational
differences. As examples, OSB Figures 6.8 and 6.9 depict the general form of signal flow graphs.

In a signal flow graph, the value carried by a specific branch is equal to the value of its
originating node. Nodes in signal flow graphs represent variables. The value carried by a
specific node is the sum of all branches coming into it. If there is only one entering branch, the
node is a “branching note” rather than a “summing node.” Two special types of nodes exist:
source nodes have no entering branches, they present external signal sources; sink nodes have
only entering branches, they extract output from a graph. These are both labelled accordingly
in OSB Figure 6.11, which is the signal glow graph corresponding to the first order system in
OSB Figure 6.10. By convention, the delay element has been represented by a branch gain of
z−1 .

The signal flow graph representation of a LTI system is not unique. In fact, for any given
rational system function, equivalent sets of difference equations and network structures exist.
In practical implementations, factors such as number of multipliers and adders, regularity of the
structure, and finite-word-length effects are taken into account when deciding which network
structure to use.

IIR Filter Structures

Direct Forms (I & II)

Consider the following general form of a difference equation and the corresponding system
transfer function:

M N �M bk z
−1

k=0y[n] =
�

bk x[n − k] +
�

ak y[n − k] H(z) =
1 −

�N .
k=0 k=1

⇒
k=1 ak z−1

1

If we draw the signal flow graph of this N th-order system by cascading a feedforward section
and a feedback section, we obtain its Direct Form I structure shown in OSB Figure 6.14. Note
that the feedforward section determines the zeros of the transfer function, while the feedback
section gives the poles. Interchanging the order of the feedforward and feedback sections and
combining the delay elements give the Direct Form II structure shown in OSB Figure 6.15.

Since delay elements correspond to physical memories in actual implementation, direct form
II structures require less state memory than the direct form I implementation. However, the
total memory requirement for both forms are similar, because direct form II structures need
more cache memory during computations.

Transposed Forms

Using signal flow graphs, we can transform a given system into a different network structure
while maintaining the same system function. One such transformation is transposition.

Transposition Theorem

1. Reverse direction of all branches

2. Interchange input and output

For single-input single-out systems, interchanging the input and output nodes after reversing
the flow graph gives the same transfer function as the original system. OSB Examples 6.7 and
6.8, and OSB Figures 6.24-6.30 illustrate transposition of basic systems. Although the transfer
functions remain the same, different network structures represent different algorithms, which
are equivalent under ideal infinite precision arithmetic. With finite precision arithmetic, the
implementation structure determines internally generated noise which affects the overall system
behavior.

Cascade Form

Rather than deriving the signal flow graph directly from the system function as in the direct
form cases, we could also factor the denominator and numerator of the system transfer function
into first-order and second-order subsystems:

Ns b0k + b1k z
−1 + b2k z

−2

H(z) =
�

.
1 − a1k z−1 − a2k z−2

k=1

OSB Figure 6.18 is an example of the resulting cascade structure. This is a sixth-order system
with direct form II realization for each of its second-order subsystems.

2

Parallel Form

Equivalently, expressing the transfer function as a sum using partial fraction expansion gives a
parallel structure:

Np Ns e0k + e1kz
−1

H(z) =
�

Ckz
−k +

�

1 − a1kz−1 − a2kz−2 .
k=0 k=1

OSB Figure 6.20 shows a parallel form structure for a sixth-order system. See Section 6.3 for
a more detailed explanation.

FIR Filter Structures

FIR systems are special cases of IIR systems, which can be structured into direct, cascade, or
parallel forms. There also exist additional forms specific to FIR systems.

Direct Form

A causal FIR system described by the following difference equation has all of its poles at the
the origin:

M

y[n] =
�

bkx[n− k] .
k=0

As such, its direct form I & II implementations reduce to the flow graph shown in OSB Figure
6.31. Such a structure is usually called a tap-delay line filter structure or a transversal filter
structure. Furthermore, applying the transposition theorem gives the equivalent system in OSB
Figure 6.32. Note that these are non-recursive, ie. there is no feedback. The implementation
of FIR systems, nonetheless, is not necessarily always nonrecursive, since pole-zero cancellation
may exist.

Direct Form Structure for Linear-Phase FIR Systems

In previous lectures we have shown that a causal generalized linear phase FIR system satisfies
the following symmetry (anti-symmetry) condition, depending on the type of the system:

h[M − n] = h[n] or h[M − n] = [n] n = 0, 1, . . . ,M . −h

Using this special property, can we further simplify the tap-delay line filter structure to reduce
the number of multipliers required? The answer is yes. Consider a type I system where the
transfer function H(z) is of even degree and symmetric. Rewrite H(z) as:

M

H(z) =
�

h[n]z−n = h[0](1 + z−M)) + h[1](z−1 + z−(M−1)) + . . .
n=0

M/2−1

=
�

h[n](z−n + z−(M−n)) + h[M/2]z−M/2 .
n=0

3

This equation suggests the realization shown in OSB Figure 6.34. Similarly, structures can be
derived for type II, III and IV systems. See OSB Figure 6.35 for an example of a type III
system where the order M is odd.

Lattice Filters

We have previously shown that a single-input single-output (SISO) system can be implemented
by cascading SISO direct-form structured subsystems. In this section, we show another pos­
sible implementation, called lattice filters, where the subsystems are two-port LTI systems of
particular forms. The overall cascade is converted to the required SISO form by terminating
both ends according to filter type specific rules.

All-zero (FIR) Lattice Filters the basic two-port section in an FIR lattice filter has the
following non-recursive butterfly signal flow graph structure:

One section of lattice structure for FIR lattice filters

For the overall system, the input is fed into the two input ports of the first stage, while the
output is taken as that of the top branch of the last stage:

General form of a lattice filter

The coefficients k1, k2, . . . , kp+1 are called the k-parameters of the lattice structure. If the
input s[n] is a unit impulse, it can be shown that the intermediate transfer functions in this
FIR lattice filter satisfy the following recursive equations:

4

A0(z) = 1 Ap+1(z) = Ap(z) − kp+1Bp(Z)

B0(z) = z−1 Bp+1(z) = z−1[Bp(z) − kp+1Ap(z)] .

Algorithms exist for analyzing an FIR lattice filter to obtain its transfer function, or con­
structing an FIR lattice structure (ie. calculating the k-parameters) from a given rational
system function. These will be studied later in this course.

All-pole Lattice Filters Given the structure of an all-zero lattice filter as discussed in the
previous section, by successively reversing each lattice section, we can obtain an all-pole lattice
filter. The signal flow graph for a reversed lattice section is

One section of lattice structure for all-pole filters

We have scaled all signals by AM (z) because assuming the input is at the p + 1 = M -th
stage and the output is at p = 0, setting Ap+1(z) = AM (z), and A0(z) = 1 gives the desired

A0(z)all-pole filter: AM (z) . The following figure shows the overall structure of an all-pole lattice filter.
Note since B0(z) = z−1, the bottom branch of the final lattice section should be connected to
the top branch.

All-pole lattice filter

An important property of all-pole lattice filters is that the systems are stable if and only if all
of the k-parameters have magnitudes less than 1, ie. ki < 1 for all i.| |

5

Effects of Coefficient Quantization

So far, we have looked at different ways of implementing the same difference equation. Although
theoretically equivalent, each implementation may behave differently in the presence of finite
precision arithmetic. Numerical problems can be introduced by filter coefficient quantization
and signal quantization.

As an illustration of the coefficient quantization effect, OSB Figure 6.40 displays the fre­
quency responses of three different implementations for a 12th-order bandpass IIR elliptic filter
with unquantized and quantized coefficients. Here 32-bit floating-point accuracy has been de­
fined as “unquantized,” and the 16-bit quantized coefficients have been listed in OSB Tables
6.1 and 6.2. See OSB Section 6.7.2 for detailed analysis of this example.

Filter coefficient quantization causes the poles and zeros of the system to shift, consequently
distorting its frequency response. The next set of figures compares the log magnitudes and pole-
zero plots of an 8th-order bandpass filter under different implementation forms and various
quantization accuracies. Note when the coefficients are quantized to 12 or 10-bits in the direct
form implementation, some poles move to the outside of the unit circle, making the overall
system unstable.

6

7

8

9

10

11

12

example is an 8th-order lowpass filter:The next

13

14

15

16

17

18

19

20

