Significance of RMS (Root Mean Square) value

Root Mean Square (RMS) value is the most important parameter that signifies the size of a signal.

Defining the term “size”:

In signal processing, a signal is viewed as a function of time. The term “size of a signal” is used to represent “strength of the signal”. It is crucial to know the “size” of a signal used in a certain application. For example, we may be interested to know the amount of electricity needed to power a LCD monitor as opposed to a CRT monitor. Both of these applications are different and have different tolerances. Thus the amount of electricity driving these devices will also be different.

A given signal’s size can be measured in many ways. Some of them are,

Total energy
► Square root of total energy
► Integral absolute value
► Maximum or peak absolute value
► Root Mean Square (RMS) value
► Average Absolute (AA) value

Parseval’s theorem

The Parseval’s theorem expresses the energy of a signal in time-domain in terms of the average energy in its frequency components.

Suppose if the x[n] is a sequence of complex numbers of length N : xn={x0,x1,…,xN-1}, its N-point discrete Fourier transform (DFT): Xk={X0,X1,…,XN-1} is given by

The inverse discrete Fourier transform is given by

Suppose if x[n] and y[n] are two such sequences that follows the above definitions, the Parseval’s theorem is written as

where, indicates conjugate operation.

Deriving Parseval’s theorem

Energy content

Given a discrete-time sequence length N : xn={x0,x1,…,xN-1}, according to Parseval’s theorem, the energy content of the signal in the time-domain is equivalent to the average of the energy contained in its frequency components.

If the samples x[n] and X[k] are real-valued, then

Mean Square value

Mean square value is the arithmetic mean of squares of a given set of numbers. For a complex-valued signal set represented as discrete sampled values – , the mean square xMS value is given as

Applying Parseval’s theorem, the mean square value can also be computed using frequency domain components X[k]

RMS value

RMS value of a signal is calculated as the square root of average of squared value of the signal. For a complex-valued signal set represented as discrete sampled values – , the mean square xRMS value is given as

Applying Parseval’s theorem, the root mean square value can also be computed using frequency domain components X[k]

Implementing in Matlab:

Following Matlab code demonstrates the calculation of RMS value for a random sequence using time-domain and frequency domain approach. Figure 1, depicts the simulation results for RMS values for some well-known waveforms.

N=100; %length of the signal
x=randn(1,N); %a random signal to test 
X=fft(x); %Frequency domain representation of the signal 

RMS1 = sqrt(mean(x.*conj(x))) %RMS value from time domain samples 
RMS2 = sqrt(sum(X.*conj(X))/length(x)^2) %RMS value from frequency domain representation

%Result: RMS1 = 0.9814, RMS2 = 0.9814

%Matlab has inbuilt 'rms' function, it can also be used.
RMS values of some well known signals (sinewave, full-wave rectified sinusoid, half-wave rectified sinusoid and rectangular signal)
Figure 1: RMS values of some well known signals

Significance of RMS value

► One of the most important parameter that is used to describe the strength of an Alternating Current (AC).

► RMS value of an AC voltage/current is equivalent to the DC voltage/current that produces the same heating effect when applied across an identical resistor. Hence, it is also a measure of energy content in a given signal.

► In statistics, for any zero-mean random stationary signal, the RMS value is same as the standard deviation of the signal. Example : Delay spread of a multipath channel is often calculated as the RMS value of the Power Delay Profile (PDP)

► When two uncorrelated (or orthogonal ) signals are added together, such as noise from two independent sources, the RMS value of their sum is equal to the square-root of sum of the square of their individual RMS values.

Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.

See also

Basics of – Power and Energy of a signal
Calculation of power of a signal and verifying it through Matlab.

Books by the author


Wireless Communication Systems in Matlab
Second Edition(PDF)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Python
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Matlab
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart
Hand-picked Best books on Communication Engineering
Best books on Signal Processing