π/2 BPSK (pi/2 BPSK): 5G NR PHY modulation

The 5G New Radio (NR) supports quadrature phase shift keying (QPSK), 16- quadrature amplitude modulation (16-QAM), 64 QAM and 256 QAM modulation schemes for both uplink and downlink [1][2]. This is same as in LTE.

Additionally, 5G NR supports π/2-BPSK in uplink (to be combined with OFDM with CP or DFT-s OFDM with CP)[1][2]. Utilization of π/2-BPSK in the uplink is aimed at providing further reduction of peak-to-average power ratio (PAPR) and boosting RF amplifier power efficiency at lower data-rates.

π/2 BPSK

π/2 BPSK uses two sets of BPSK constellations that are shifted by 90°. The constellation sets are selected depending on the position of the bits in the input sequence. Figure (1) depicts the two constellation sets for π/2 BPSK that are defined as per equation (1)

\[d[i] = \frac{e^{j \frac{\pi}{2} \left( i \; mod \; 2\right) }}{ \sqrt{2}} \left[ \left(1 – 2b[i] \right) + j \left(1 – 2b[i] \right)\right] \quad \quad (1) \]

b[i] = input bits; i = position or index of input bits; d[i] = mapped bits (constellation points)

Ideal pi by 2 BPSK constellation as per 3GPP TS 38.211 5G specification odd even bits
Figure 1: Two rotated constellation sets for use in π/2 BPSK

Equation (2) is for conventional BPSK – given for comparison. Figure (2) and Figure (3) depicts the ideal constellations and waveforms for BPSK and π/2 BPSK, when a long sequence of random input bits are input to the BPSK and π/2 BPSK modulators respectively. From the waveform, you may note that π/2 BPSK has more phase transitions than BPSK. Therefore π/2 BPSK also helps in better synchronization, especially for cases with long runs of 1s and 0s in the input sequence.

\[d[i] = \frac{1}{ \sqrt{2}} \left[ \left(1 – 2b[i] \right) + j \left(1 – 2b[i] \right)\right] \quad \quad (2)\]
Figure 2: Ideal BPSK and π/2 BPSK constellations
Figure 3: Waveforms of BPSK and π/2 BPSK for same sequence of input bits

Figure 4, illustrates the constellations for BPSK and π/2 BPSK when the sequence of mapped bits are corrupted by noise.

Figure 4: BPSK and π/2 BPSK constellation for Eb/N0=50dB

Note: Though the π/2 BPSK constellation looks like a QPSK constellation, they are not the same. Give it a thought !!!

References

[1] 3GPP TS 38.201: Physical layer; General description (Release 16)
[2] 3GPP TS 38.211: Physical channels and modulation (Release 16)
[3] Gustav Gerald Vos, ‘Two-tone in-phase pi/2 binary phase-shift keying communication’, US patent number 10,931,492

Constellation diagram – investigate phase transitions

The phase transition properties of the different variants of QPSK schemes and MSK, are easily investigated using constellation diagram. Let’s demonstrate how to plot the signal space constellations, for the various modulations used in the transmitter.

Typically, in practical applications, the baseband modulated waveforms are passed through a pulse shaping filter for combating the phenomenon of intersymbol interference (ISI). The goal is to plot the constellation plots of various pulse-shaped baseband waveforms of the QPSK, O-QPSK and π/4-DQPSK schemes. A variety of pulse shaping filters are available and raised cosine filter is specifically chosen for this demo. The raised cosine (RC) pulse comes with an adjustable transition band roll-off parameter α, using which the decay of the transition band can be controlled.

This article is part of the following books
Digital Modulations using Matlab : Build Simulation Models from Scratch, ISBN: 978-1521493885
Digital Modulations using Python ISBN: 978-1712321638
All books available in ebook (PDF) and Paperback formats

The RC pulse shaping function is expressed in frequency domain as

Equivalently, in time domain, the impulse response corresponds to

A simple evaluation of the equation (2) produces singularities (undefined points) at p(t = 0) and p(t = ±Tsym/(2α)). The value of the raised cosine pulse at these singularities can be obtained by applying L’Hospital’s rule [1] and the values are

Using the equations above, the raised cosine filter is implemented as a function (refer the books Digital Modulations using Python and Digital Modulations using Matlab for the code).

The function is then tested. It generates a raised cosine pulse for the given symbol duration Tsym = 1s and plots the time-domain view and the frequency response as shown in Figure 1. From the plot, it can be observed that the RC pulse falls off at the rate of 1/|t|3 as t→∞, which is a significant improvement when compared to the decay rate of a sinc pulse which is 1/|t|. It satisfies Nyquist criterion for zero ISI – the pulse hits zero crossings at desired sampling instants. The transition bands in the frequency domain can be made gradual (by controlling α) when compared to that of a sinc pulse.

Figure 1: Raised-cosine pulse and its manifestation in frequency domain

Plotting constellation diagram

Now that we have constructed a function for raised cosine pulse shaping filter, the next step is to generate modulated waveforms (using QPSK, O-QPSK and π/4-DQPSK schemes), pass them through a raised cosine filter having a roll-off factor, say α = 0.3 and finally plot the constellation. The constellation for MSK modulated waveform is also plotted.

Figure 2: Constellations plots for: (a) a = 0.3 RC-filtered QPSK, (b) α = 0.3 RC-filtered O-QPSK, (c) α = 0.3 RC-filtered π/4-DQPSK and (d) MSK

Conclusions

The resulting simulated plot is shown in the Figure 2. From the resulting constellation diagram, following conclusions can be reached.

  • Conventional QPSK has 180° phase transitions and hence it requires linear amplifiers with high Q factor
  • The phase transitions of Offset-QPSK are limited to 90° (the 180° phase transitions are eliminated)
  • The signaling points for π/4-DQPSK is toggled between two sets of QPSK constellations that are shifted by 45° with respect to each other. Both the 90° and 180° phase transitions are absent in this constellation. Therefore, this scheme produces the lower envelope variations than the rest of the two QPSK schemes.
  • MSK is a continuous phase modulation, therefore no abrupt phase transition occurs when a symbol changes. This is indicated by the smooth circle in the constellation plot. Hence, a band-limited MSK signal will not suffer any envelope variation, whereas, the rest of the QPSK schemes suffer varied levels of envelope variations, when they are band-limited.

References

[1] Clay S. Turner, Raised Cosine and Root Raised Cosine Formulae, Wireless Systems Engineering, Inc, (May 29, 2007) V1.2↗

In this chapter

Digital Modulators and Demodulators - Passband Simulation Models
Introduction
Binary Phase Shift Keying (BPSK)
 □ BPSK transmitter
 □ BPSK receiver
 □ End-to-end simulation
Coherent detection of Differentially Encoded BPSK (DEBPSK)
● Differential BPSK (D-BPSK)
 □ Sub-optimum receiver for DBPSK
 □ Optimum noncoherent receiver for DBPSK
Quadrature Phase Shift Keying (QPSK)
 □ QPSK transmitter
 □ QPSK receiver
 □ Performance simulation over AWGN
● Offset QPSK (O-QPSK)
● π/p=4-DQPSK
● Continuous Phase Modulation (CPM)
 □ Motivation behind CPM
 □ Continuous Phase Frequency Shift Keying (CPFSK) modulation
 □ Minimum Shift Keying (MSK)
Investigating phase transition properties
● Power Spectral Density (PSD) plots
Gaussian Minimum Shift Keying (GMSK)
 □ Pre-modulation Gaussian Low Pass Filter
 □ Quadrature implementation of GMSK modulator
 □ GMSK spectra
 □ GMSK demodulator
 □ Performance
● Frequency Shift Keying (FSK)
 □ Binary-FSK (BFSK)
 □ Orthogonality condition for non-coherent BFSK detection
 □ Orthogonality condition for coherent BFSK
 □ Modulator
 □ Coherent Demodulator
 □ Non-coherent Demodulator
 □ Performance simulation
 □ Power spectral density

Books by the author


Wireless Communication Systems in Matlab
Second Edition(PDF)

(173 votes, average: 3.66 out of 5)

Checkout Added to cart

Digital Modulations using Python
(PDF ebook)

(127 votes, average: 3.58 out of 5)

Checkout Added to cart

Digital Modulations using Matlab
(PDF ebook)

(134 votes, average: 3.63 out of 5)

Checkout Added to cart
Hand-picked Best books on Communication Engineering
Best books on Signal Processing