Power and Energy of a Signal : Demystified

Key focus: Clearly understand the terms: power and energy of a signal, their mathematical definition, physical significance and computation in signal processing context.

Energy of a signal:

Defining the term “size”:

In signal processing, a signal is viewed as a function of time. The term “size of a signal” is used to represent “strength of the signal”. It is crucial to know the “size” of a signal used in a certain application. For example, we may be interested to know the amount of electricity needed to power a LCD monitor as opposed to a CRT monitor. Both of these applications are different and have different tolerances. Thus the amount of electricity driving these devices will also be different.

A given signal’s size can be measured in many ways. Given a mathematical function (or a signal equivalently), it seems that the area under the curve, described by the mathematical function, is a good measure of describing the size of a signal. A signal can have both positive and negative values. This may render areas that are negative. Due to this effect, it is possible that the computed values cancel each other totally or partially, rendering incorrect result. Thus the metric function of “area under the curve” is not suitable for defining the “size” of a signal. Now, we are left with two options : either 1) computation of the area under the absolute value of the function or 2) computation of the area under the square of the function. The second choice is favored due to its mathematical tractability and its similarity to Euclidean Norm which is used in signal detection techniques (Note: Euclidean norm – otherwise called L2 norm or 2-norm[1] – is often considered in signal detection techniques – on the assumption that it provides a reasonable measure of distance between two points on signal space. It is computed as Euclidean distance in detection theory).

This article is part of the following books
Digital Modulations using Matlab : Build Simulation Models from Scratch, ISBN: 978-1521493885
Digital Modulations using Python ISBN: 978-1712321638
Wireless communication systems in Matlab ISBN: 979-8648350779
All books available in ebook (PDF) and Paperback formats

Going by the second choice of viewing the “size” as the computation of the area under the square of the function, the energy of a continuous-time complex signal \(x(t)\) is defined as

\[E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt\]

If the signal \(x(t)\) is real, the modulus operator in the above equation does not matter.

This is called “Energy” in signal processing terms. This is also a measure of signal strength. This definition can be applied to any signal (or a vector) irrespective of whether it possesses actual energy (a basic quantitative property as described by physics) or not. If the signal is associated with some physical energy, then the above definition gives the energy content in the signal. If the signal is an electrical signal, then the above definition gives the total energy of the signal (in Joules) dissipated over a 1 Ohm resistor.

Actual Energy – physical quantity:

To know the actual energy of the signal \(E\), one has to know the value of load \(Z\) the signal is driving and also the nature the electrical signal (voltage or current). For a voltage signal, the above equation has to be scaled by a factor of \(1/Z\).

\[E = \frac{E_x}{Z} = \frac{1}{Z} \int_{-\infty}^{\infty} |x(t)|^2 dt \]

For current signal, it has to be scaled by \(Z\).

\[E = ZE_x = Z \int_{-\infty}^{\infty} |x(t)|^2 dt\]

Here, \(Z\) is the impedance driven by the signal \(x(t)\) , \(E_x\) is the signal energy (signal processing term) and \(E\) is the Energy of the signal (physical quantity) driving the load \( Z\)

Energy in discrete domain:

In the discrete domain, the energy of the signal is given by

\[E_x = \displaystyle{ \sum_{n=-\infty}^{\infty} |x(n)|^2}\]

The energy is finite only if the above sum converges to a finite value. This implies that the signal is “squarely-summable“. Such a signal is called finite energy signal.

What if the given signal does not decay with respect to time (as in a continuous sine wave repeating its cycle infinitely) ? The energy will be infinite  and such a signal is “not squarely-summable” in other words. We need another measurable quantity to circumvent this problem.This leads us to the notion of “Power”

Power:

Power is defined as the amount of energy consumed per unit time. This quantity is useful if the energy of the signal goes to infinity or the signal is “not-squarely-summable”. For “non-squarely-summable” signals, the power calculated by taking the snapshot of the signal over a specific interval of time as follows

1) Take a snapshot of the signal over some finite time duration
2) Compute the energy of the signal \(E_x\)
3) Divide the energy by number of samples taken for computation \(N\)
4) Extend the limit of number of samples to infinity \(N\rightarrow \infty \). This gives the total power of the signal.

In discrete domain, the total power of the signal is given by

\[P_x = \lim_{N \rightarrow \infty } \frac{1}{2N+1} \displaystyle{\sum_{n=-N}^{n=+N} |x(n)|^2} \]

Following equations are different forms of the same computation found in many text books. The only difference is the number of samples taken for computation. The denominator changes according to the number of samples taken for computation.

\[\begin{align} P_x &= \lim_{N \rightarrow \infty } \frac{1}{2N} \displaystyle{\sum_{n=-N}^{n=N-1} |x(n)|^2} \\ P_x &= \lim_{N \rightarrow \infty } \frac{1}{N} \displaystyle{\sum_{n=0}^{n=N-1} |x(n)|^2} \\ P_x &= \lim_{N \rightarrow \infty } \frac{1}{N_1 – N_0 + 1} \displaystyle{\sum_{n=N_0}^{n=N_1} |x(n)|^2} \end{align} \]

Classification of Signals:

A signal can be classified based on its power or energy content. Signals having finite energy are energy signals. Power signals have finite and non-zero power.

Energy Signal :

A finite energy signal will have zero TOTAL power. Let’s investigate this statement in detail. When the energy is finite, the total power will be zero. Check out the denominator in the equation for calculating the total power. When the limit \(N\rightarrow \infty\), the energy dilutes to zero over the infinite duration and hence the total power becomes zero.

Power Signal:

Signals whose total power is finite and non-zero. The energy of the power signal will be infinite. Example: Periodic sequences like sinusoid. A sinusoidal signal has finite, non-zero power but infinite energy.

A signal cannot be both an energy signal and a power signal.

Neither an Energy signal nor a Power signal:

Signals can also be a cat on the wall – neither an energy signal nor a power signal. Consider a signal of increasing amplitude defined by,

\[x(n) = n\]

For such a signal, both the energy and power will be infinite. Thus, it cannot be classified either as an energy signal or as a power signal.

Calculation of power and verifying it through Matlab is discussed next…

Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.

References:

[1] Sanjay Lall,”Norm and Vector spaces”,Information Systems Laboratory,Stanford University.↗

Books by the author


Wireless Communication Systems in Matlab
Second Edition(PDF)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Python
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart
digital_modulations_using_matlab_book_cover
Digital Modulations using Matlab
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart
Hand-picked Best books on Communication Engineering
Best books on Signal Processing

Similar Topics

Essentials of Signal Processing
● Generating standard test signals
 □ Sinusoidal signals
 □ Square wave
 □ Rectangular pulse
 □ Gaussian pulse
 □ Chirp signal
Interpreting FFT results - complex DFT, frequency bins and FFTShift
 □ Real and complex DFT
 □ Fast Fourier Transform (FFT)
 □ Interpreting the FFT results
 □ FFTShift
 □ IFFTShift
Obtaining magnitude and phase information from FFT
 □ Discrete-time domain representation
 □ Representing the signal in frequency domain using FFT
 □ Reconstructing the time domain signal from the frequency domain samples
● Power spectral density
Power and energy of a signal
 □ Energy of a signal
 □ Power of a signal
 □ Classification of signals
 □ Computation of power of a signal - simulation and verification
Polynomials, convolution and Toeplitz matrices
 □ Polynomial functions
 □ Representing single variable polynomial functions
 □ Multiplication of polynomials and linear convolution
 □ Toeplitz matrix and convolution
Methods to compute convolution
 □ Method 1: Brute-force method
 □ Method 2: Using Toeplitz matrix
 □ Method 3: Using FFT to compute convolution
 □ Miscellaneous methods
Analytic signal and its applications
 □ Analytic signal and Fourier transform
 □ Extracting instantaneous amplitude, phase, frequency
 □ Phase demodulation using Hilbert transform
Choosing a filter : FIR or IIR : understanding the design perspective
 □ Design specification
 □ General considerations in design

White Noise : Simulation and Analysis using Matlab

Definition

A random process (or signal for your visualization) with a constant power spectral density (PSD) function is a white noise process.

Power Spectral Density

Power Spectral Density function (PSD) shows how much power is contained in each of the spectral component. For example, for a sine wave of fixed frequency, the PSD plot will contain only one spectral component present at the given frequency. PSD is an even function and so the frequency components will be mirrored across the Y-axis when plotted. Thus for a sine wave of fixed frequency, the double sided plot of PSD will have two components – one at +ve frequency and another at –ve frequency of the sine wave. (Know how to plot PSD/FFT in Python & in Matlab)

Gaussian and Uniform White Noise:

A white noise signal (process) is constituted by a set of independent and identically distributed (i.i.d) random variables. In discrete sense, the white noise signal constitutes a series of samples that are independent and generated from the same probability distribution. For example, you can generate a white noise signal using a random number generator in which all the samples follow a given Gaussian distribution. This is called White Gaussian Noise (WGN) or Gaussian White Noise. Similarly, a white noise signal generated from a Uniform distribution is called Uniform White Noise.

Gaussian Noise and Uniform Noise are frequently used in system modelling. In modelling/simulation, white noise can be generated using an appropriate random generator. White Gaussian Noise can be generated using randn function in Matlab which generates random numbers that follow a Gaussian distribution. Similarly, rand function can be used to generate Uniform White Noise in Matlab that follows a uniform distribution. When the random number generators are used, it generates a series of random numbers from the given distribution. Let’s take the example of generating a White Gaussian Noise of length 10 using randn function in Matlab – with zero mean and standard deviation=1.

>> mu=0;sigma=1;
>> noise= sigma *randn(1,10)+mu
noise =   -1.5121    0.7321   -0.1621    0.4651    1.4284    1.0955   -0.5586    1.4362   -0.8026    0.0949

What is i.i.d ?

This simply generates 10 random numbers from the standard normal distribution. As we know that a white process is seen as a random process composing several random variables following the same Probability Distribution Function (PDF). The 10 random numbers above are generated from the same PDF (standard normal distribution). This condition is called “identically distributed” condition. The individual samples given above are “independent” of each other. Furthermore, each sample can be viewed as a realization of one random variable. In effect, we have generated a random process that is composed of realizations of 10 random variables. Thus, the process above is constituted from “independent identically distributed” (i.i.d) random variables.

Strictly and weakly defined white noise:

Since the white noise process is constructed from i.i.d random variable/samples, all the samples follow the same underlying probability distribution function (PDF). Thus, the Joint Probability Distribution function of the process will not change with any shift in time. This is called a stationary process. Hence, this noise is a stationary process. As with a stationary process which can be classified as Strict Sense Stationary (SSS) and Wide Sense Stationary (WSS) processes, we can have white noise that is SSS and white noise that is WSS. Correspondingly they can be called strictly defined white noise signal and weakly defined white noise signal.

What’s with Covariance Function/Matrix ?

A white noise signal, denoted by \(x(t)\), is defined in weak sense is a more practical condition. Here, the samples are statistically uncorrelated and identically distributed with some variance equal to \(\sigma^2\). This condition is specified by using a covariance function as

\[COV \left(x_i, x_j \right) = \begin{cases} \sigma^2, & \quad i = j \\ 0, & \quad i \neq j \end{cases}\]

Why do we need a covariance function? Because, we are dealing with a random process that is composed of \(n\) random variables (10 variables in the modelling example above). Such a process is viewed as multivariate random vector or multivariate random variable.

For multivariate random variables, Covariance function specified how each of the \(n\) variables in the given random process behaves with respect to each other. Covariance function generalizes the notion of variance to multiple dimensions.

The above equation when represented in the matrix form gives the covariance matrix of the white noise random process. Since the random variables in this process are statistically uncorrelated, the covariance function contains values only along the diagonal.

\[C_{xx} = \begin{bmatrix} \sigma^2 & \cdots & 0 \\ \vdots & \sigma^2 & \vdots \\ 0 & \cdots & \sigma^2\end{bmatrix} = \sigma^2 \mathbf{I} \]

The matrix above indicates that only the auto-correlation function exists for each random variable. The cross-correlation values are zero (samples/variables are statistically uncorrelated with respect to each other). The diagonal elements are equal to the variance and all other elements in the matrix are zero.The ensemble auto-correlation function of the weakly defined white noise is given by This indicates that the auto-correlation function of weakly defined white noise process is zero everywhere except at lag \(\tau=0\).

\[R_{xx}(\tau) = E \left[ x(t) x^*(t-\tau)\right] = \sigma^2 \delta (\tau)\]

Related topic: Constructing the auto-correlation matrix in Matlab

Frequency Domain Characteristics:

Wiener-Khintchine Theorem states that for Wide Sense Stationary Process (WSS), the power spectral density function \(S_{xx}(f)\) of a random process can be obtained by Fourier Transform of auto-correlation function of the random process. In continuous time domain, this is represented as

\[S_{xx}(f) = F \left[R_{xx}(\tau) \right] = \int_{-\infty}^{\infty} R_{xx} (\tau) e ^{- j 2 \pi f \tau} d \tau\]

For the weakly defined white noise process, we find that the mean is a constant and its covariance does not vary with respect to time. This is a sufficient condition for a WSS process. Thus we can apply Weiner-Khintchine Theorem. Therefore, the power spectral density of the weakly defined white noise process is constant (flat) across the entire frequency spectrum (Figure 1). The value of the constant is equal to the variance or power of the noise signal.

\[S_{xx}(f) = F \left[R_{xx}(\tau) \right] = \int_{-\infty}^{\infty} \sigma^2 \delta (\tau) e ^{- j 2 \pi f \tau} d \tau = \sigma^2 \int_{-\infty}^{\infty} \delta (\tau) e ^{- j 2 \pi f \tau} = \sigma^2\]
Figure 1: Weiner-Khintchine theorem illustrated

Testing the characteristics of White Gaussian Noise in Matlab:

Generate a Gaussian white noise signal of length \(L=100,000\) using the randn function in Matlab and plot it. Let’s assume that the pdf is a Gaussian pdf with mean \(\mu=0\) and standard deviation \(\sigma=2\). Thus the variance of the Gaussian pdf is \(\sigma^2=4\). The theoretical PDF of Gaussian random variable is given by

\[f_X(x) = \frac{1}{\sigma \sqrt{2 \pi}} \cdot exp \left[ – \frac{\left( x – \mu\right)^2}{2 \sigma^2} \right] \]

More simulation techniques available in the following ebooks
Digital Modulations using Matlab
Digital Modulations using Python
Wireless Communication systems in Matlab

clear all; clc; close all;
L=100000; %Sample length for the random signal
mu=0;
sigma=2;
X=sigma*randn(L,1)+mu;

figure();
subplot(2,1,1)
plot(X);
title(['White noise : \mu_x=',num2str(mu),' \sigma^2=',num2str(sigma^2)])
xlabel('Samples')
ylabel('Sample Values')
grid on;
Figure 2: Simulated noise samples

Plot the histogram of the generated noise signal and verify the histogram by plotting against the theoretical pdf of the Gaussian random variable.

If you are inclined towards programming in Python, go here to know about plotting histogram using Matplotlib package.

subplot(2,1,2)
n=100; %number of Histrogram bins
[f,x]=hist(X,n);
bar(x,f/trapz(x,f)); hold on;
%Theoretical PDF of Gaussian Random Variable
g=(1/(sqrt(2*pi)*sigma))*exp(-((x-mu).^2)/(2*sigma^2));
plot(x,g);hold off; grid on;
title('Theoretical PDF and Simulated Histogram of White Gaussian Noise');
legend('Histogram','Theoretical PDF');
xlabel('Bins');
ylabel('PDF f_x(x)');
Figure 3: Plot of simulated & theoretical PDF for Gaussian RV

Compute the auto-correlation function of the white noise. The computed auto-correlation function has to be scaled properly. If the ‘xcorr’ function (inbuilt in Matlab) is used for computing the auto-correlation function, use the ‘biased’ argument in the function to scale it properly.

figure();
Rxx=1/L*conv(flipud(X),X);
lags=(-L+1):1:(L-1);

%Alternative method
%[Rxx,lags] =xcorr(X,'biased'); 
%The argument 'biased' is used for proper scaling by 1/L
%Normalize auto-correlation with sample length for proper scaling

plot(lags,Rxx); 
title('Auto-correlation Function of white noise');
xlabel('Lags')
ylabel('Correlation')
grid on;
Figure 4: Autocorrelation function of generated noise

Simulating the PSD:

Simulating the Power Spectral Density (PSD) of the white noise is a little tricky business. There are two issues here 1) The generated samples are of finite length. This is synonymous to applying truncating an infinite series of random samples. This implies that the lags are defined over a fixed range. ( FFT and spectral leakage – an additional resource on this topic can be found here) 2) The random number generators used in simulations are pseudo-random generators. Due these two reasons, you will not get a flat spectrum of psd when you apply Fourier Transform over the generated auto-correlation values.The wavering effect of the psd can be minimized by generating sufficiently long random signal and averaging the psd over several realizations of the random signal.

Simulating Gaussian White Noise as a Multivariate Gaussian Random Vector:

To verify the power spectral density of the white noise, we will use the approach of envisaging the noise as a composite of \(N\) Gaussian random variables. We want to average the PSD over \(L\) such realizations. Since there are \(N\) Gaussian random variables (\(N\) individual samples) per realization, the covariance matrix \( C_{xx}\) will be of dimension \(N \times N\). The vector of mean for this multivariate case will be of dimension \(1 \times N\).

Cholesky decomposition of covariance matrix gives the equivalent standard deviation for the multivariate case. Cholesky decomposition can be viewed as square root operation. Matlab’s randn function is used here to generate the multi-dimensional Gaussian random process with the given mean matrix and covariance matrix.

%Verifying the constant PSD of White Gaussian Noise Process
%with arbitrary mean and standard deviation sigma

mu=0; %Mean of each realization of Noise Process
sigma=2; %Sigma of each realization of Noise Process

L = 1000; %Number of Random Signal realizations to average
N = 1024; %Sample length for each realization set as power of 2 for FFT

%Generating the Random Process - White Gaussian Noise process
MU=mu*ones(1,N); %Vector of mean for all realizations
Cxx=(sigma^2)*diag(ones(N,1)); %Covariance Matrix for the Random Process
R = chol(Cxx); %Cholesky of Covariance Matrix
%Generating a Multivariate Gaussian Distribution with given mean vector and
%Covariance Matrix Cxx
z = repmat(MU,L,1) + randn(L,N)*R;

Compute PSD of the above generated multi-dimensional process and average it to get a smooth plot.

%By default, FFT is done across each column - Normal command fft(z)
%Finding the FFT of the Multivariate Distribution across each row
%Command - fft(z,[],2)
Z = 1/sqrt(N)*fft(z,[],2); %Scaling by sqrt(N);
Pzavg = mean(Z.*conj(Z));%Computing the mean power from fft

normFreq=[-N/2:N/2-1]/N;
Pzavg=fftshift(Pzavg); %Shift zero-frequency component to center of spectrum
plot(normFreq,10*log10(Pzavg),'r');
axis([-0.5 0.5 0 10]); grid on;
ylabel('Power Spectral Density (dB/Hz)');
xlabel('Normalized Frequency');
title('Power spectral density of white noise');
Figure 5: Power spectral density of generated noise

The PSD plot of the generated noise shows almost fixed power in all the frequencies. In other words, for a white noise signal, the PSD is constant (flat) across all the frequencies (\(- \infty\) to \(+\infty\)). The y-axis in the above plot is expressed in dB/Hz unit. We can see from the plot that the \(constant \; power = 10 log_{10}(\sigma^2) = 10 log_{10}(4) = 6\; dB\).

Application

In channel modeling, we often come across additive white Gaussian noise (AWGN) channel. To know more about the channel model and its simulation, continue reading this article: Simulate AWGN channel in Matlab & Python.

Rate this article: Note: There is a rating embedded within this post, please visit this post to rate it.

References:

[1] Robert Grover Brown, Introduction to Random Signal Analysis and Kalman Filtering. John Wiley and Sons, 1983.↗
[2] Athanasios Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. WCB/McGraw-Hill, 1991.↗

Books by the author


Wireless Communication Systems in Matlab
Second Edition(PDF)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Python
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart

Digital Modulations using Matlab
(PDF ebook)

Note: There is a rating embedded within this post, please visit this post to rate it.
Checkout Added to cart
Hand-picked Best books on Communication Engineering
Best books on Signal Processing