(7 votes, average: 4.71 out of 5)

In a wireless communication channel, the transmitted signal can travel from transmitter to receiver over multiple reflective paths. This gives rise to multipath fading which causes fluctuations in amplitude, phase and angle of arrival of the received signal. For example , the transmitted signal from the BTS (base transceiver station) may suffer multiple reflections from the buildings nearby, before reaching the mobile station.

A model is necessary to predict the effects of this fading accurately in order to mitigate it effects. Some of the models used to model multipath fading are
1) Rayleigh Fading model ( Clarke’s Model , Young’s model )

Apart from multipath reflection there might also be dispersive time varying effects in the channel that is being modeled. One such effect is Doppler Shift that is caused when the receiver and/or transmitter is in motion with respect to each other. In such cases the dispersive effect is also modeled along with the chosen multipath model.

Here the frequency-flat fading Rayleigh Fading model with Doppler shift is considered for our simulation .

The delays associated with different signal paths in a multipath fading channel change in an unpredictable manner and can only be characterized statistically. When there are a large number of paths, the central limit theorem can be applied to model the time-variant impulse response of the channel as a complex-valued Gaussian random process. When the impulse response is modeled as a zeromean complex-valued Gaussian process, the channel is said to be a Rayleigh fading channel.

The model behind Rician fading is similar to that for Rayleigh fading, except that in Rician fading a strong dominant component is present. This dominant component can for instance be the line-of-sight wave.

In our case the Rayleigh Fading model is assumed to have only two multipath components X(t) and Y(t). Rayleigh Fading can be obtained from zero-mean complex Gaussian processes (X(t) and Y(t) ). Simply adding the two Gaussian Random variables and taking the square root (envelope) gives a Rayleigh distributed process .The phase follows uniform distribution.

### Matlab Code:

Here two independent identically distributed Gaussian random arrays are generated using randn function in matlab and the envelope of their sum is computed to give Rayleigh Fading process. Histogram is used to plot the pdf of the generated process and its phase plot is also drawn.

### External Resources

• nuha

Hi sir ..
how can i extract the envelope from this channel
ch = rayleighchan(1/br,4, [0 50e-9 110e-9 170e-9 290e-9 310e-9], [0, -3, -10, -18, -26, -32]);

• For getting the envelope of a signal, you need to input a your desired test signal to the channel, get the response and plot the envelope.

In practice, envelope can be obtained using the channel visualization tool in Matlab. More details here: https://www.mathworks.com/help/comm/ug/fading-channels.html

Check the content under the topic : ‘Multipath Gain’. In that it is explained as follows on what to look for in order to the envelope :
[quote]”Narrowband (magenta dots): This is the magnitude of the narrowband phasor in the above trajectory plot. This curve is sometimes referred to as the narrowband fading envelope.” [/quote]

• dongmo

hello Sir Mathuranathan please can you help me with matlab code of impulse response of rice channel please?

• sorry. I do not have code right now. I will add it in the queue for the future posts.

• Irfan

Hi M. Thanks for sharing the code and good explanation. To improve the code, here are a few suggestions:
line 38> title(sprintf(‘Simulated and Theoretical Rayleigh PDF for variance = %4.1f’,variance)) % enables the print of the variance as set in code.
line 46> theta = atan2(y,x); % gives angle theta between [-pi,pi]
line 58> axis([-4 4 0 max(approxPDF)+0.2]) % pi = 3.14, so need axis beyond pi.

• Thanks for the feedback.

• Pingback: Probability | GaussianWaves()