Capacity of MIMO system over fading Channels

As reiterated in the previous article, a MIMO system is used to increase the capacity dramatically and also to improve the quality of a communication link. Increased capacity is obtained by spatial multiplexing and increased quality is obtained by diversity techniques (Space time coding). Capacity of MIMO system over a variety of channels (AWGN, fading … Read more

Ergodic Capacity of SISO flat fading channel

Understand ergodic capacity of a SISO flat-fading system over fading channels. Model and simulate capacity curves in Matlab. Channel model In the previous post, derivation of SISO fading channel capacity was discussed. For a flat fading channel (model shown below), with the perfect knowledge of the channel at the receiver, the capacity of a SISO … Read more

Capacity of SISO system over a fading channel

As reiterated in the previous article, a MIMO system is used to increase the capacity dramatically and also to improve the quality of a communication link. Increased capacity is obtained by spatial multiplexing and increased quality is obtained by diversity techniques (Space time coding). Capacity equations of a MIMO system over a variety of channels … Read more

Model and characterize MIMO channels

Two flavors of MIMO implementation – spatial multiplexing and spatial diversity – were discussed in the previous article. In that, it was mentioned that the reliability of a MIMO system is governed by diversity and the capacity of the link is governed by degrees of freedom. Channel State Information (CSI) Multiple data streams can be … Read more

Diversity techniques and spatial multiplexing

The wireless communication environment is very hostile. The signal transmitted over a wireless communication link is susceptible to fading (severe fluctuations in signal level), co-channel interference, dispersion effects in time and frequency, path loss effect, etc. On top of these woes, the limited availability of bandwidth posses a significant challenge to a designer in designing … Read more

Introduction to Multiple Antenna Systems

Regarded as a breakthrough in wireless communication system design, multiple antenna systems fuel the ever increasing data rate requirements of advanced technologies like UMTS, LTE, WLAN etc. Multiple antenna systems come in different flavors and are generally referred as Multiple Input Multiple Output systems (MIMO). In a series of articles, I intend to cover various … Read more

Chirp Signal – FFT & PSD in Matlab & Python

Key focus: Know how to generate a Chirp signal, compute its Fourier Transform using FFT and power spectral density (PSD) in Matlab & Python. Introduction All the signals discussed so far do not change in frequency over time. Obtaining a signal with time-varying frequency is of main focus here. A signal that varies in frequency … Read more

Gaussian Pulse – FFT & PSD in Matlab & Python

Key focus: Know how to generate a gaussian pulse, compute its Fourier Transform using FFT and power spectral density (PSD) in Matlab & Python. Numerous texts are available to explain the basics of Discrete Fourier Transform and its very efficient implementation – Fast Fourier Transform (FFT).  Often we are confronted with the need to generate … Read more

Generating Basic signals – Rectangular Pulse and Power Spectral Density using FFT

Numerous texts are available to explain the basics of Discrete Fourier Transform and its very efficient implementation – Fast Fourier Transform (FFT).  Often we are confronted with the need to generate simple, standard signals (sine, cosine, Gaussian pulse, square wave, isolated rectangular pulse, exponential decay, chirp signal) for simulation purpose. I intend to show (in a series of articles) … Read more

Generating Basic signals – Square Wave and Power Spectral Density using FFT

Numerous texts are available to explain the basics of Discrete Fourier Transform and its very efficient implementation – Fast Fourier Transform (FFT).  Often we are confronted with the need to generate simple, standard signals (sine, cosine, Gaussian pulse, squarewave, isolated rectangular pulse, exponential decay, chirp signal) for simulation purpose. I intend to show (in a series of articles) how … Read more